

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

Digital Twins **Issues and** challenges

Prof. Diego Galar

Maintenance and Relaibility, Tecnalia

Division of Operation and Maintenance Engineering Lulea University of Technology

AI DEFINITION

Artificial intelligence (AI) is the ability of a computer or computer-controlled system to perform tasks commonly associated with intelligent beings.

INDUSTRIAL AI

Industrial AI is the application of technologies to address industrial pain-points for customer value creation, productivity improvement, and insight discovery

Data driven methods are well known for long

Simp

Generate models from data and knowledge (model train)

Deep Learning Neural Network

... and use them to make decisions on real time data (model predict)

Input Layer

Hidden Layer

Scale up and populate.. The Achilles heel

"Through 2020, 80% of AI projects will remain alchemy, run by wizards whose talents will not scale in the organization." – GARTNER

Why scaling is difficult?

ne infrastructure

Conceptual view of Al platform

Edge computing is on the rise in many industries

enterprise-generated data will be created and processed at the edge by 2022

Multiple layer Edge computing architecture

Edge agents versus cloud centralized

Stores data locally

Sends data or meta data to cloud

Runs or trains ML models on the edge

Traditional way, we transfer everything to cloud

The cloud provides the services one by one....

Human confused? Let us machine talk

Social agents: The middleware

The analytics

Analytics and expectations also change

Types of data analytics

Descriptive Analytics

Group historical data according to their similarity

> Reports Mapping

The challenge in Descriptive analytics

Types of data analytics

Descriptive Analytics

Group historical data according to their similarity

> Reports Mapping

Diagnostic Analytics

Determine cause of successes and failures

Statistical analysis Queries Data Mining

Diagnostic analytics

The challenge in Diagnostics analytics

"Black Swan Event: An event or occurrence that deviates beyond

what is normally expected of a situation and that would be extremely difficult to predict."

Black Swan Losses

- Loss Distribution
 - Tail events are rare very little data
 - Typically strong model assumptions

Predictive analytics:RUL prediction

Prognostic Horizon How Far Do You Want to See Into the Future?

Choose One

 Detect Train Just Before it Hits You,

or

 Detect Train Far Enough in Advance to Take The "Right" Evasive Action

The challenge in predictive analytics

Huge gap between data science and O&M

"I need to deploy models into live business environments."

"I need strong, transparent insights to improve my daily decisions."

Data driven or model based?

Data-Based or Physics-Based Models? – That is the question!

Types of data analytics

Prescriptive analytics:RUL prediction and simulation of scenarios

Maintenainers demand: Operational recommendations with RUL estimations characterised via deterioration process, probability model, possible tasks

Can you predict and track the root cause of chaos?

HOW MACHINES LEARN

Text, images, speech & videos

- 350M photos/day
- 4.5B likes/day
- Google a ebay

BOEING

SIEMENS

Feed Back Type

- Search relevance
- Likes
- Clicks

- Product reviews
- Tagging
- Rating

Consumer Internet: Discrete, High Events

Sensor time series, text & images

- 173000+ monitored assets
- 250M/samples/day- CCGT plant •
- 3 Trips/year for GT

3.5B Google searches/day

304 M active Amazon users

- 29 Events/1M flights for a/c engines
- 1 Inspection/Year
- Domain knowledge
- Feedback loop slow

Industrial Internet: Continuous Low Events

Industrial Data & Feedback Loop are Different

Feed Back Type

Inspection results

Failure events

The method, let us twin reality

Engineering models that continuously increase insights into each asset to deliver specific business outcomes

The twin as a service provider

Digital Twin: A virtual instance of a customer's smart connected physical product

Digital Twin

Digital Twin Solution Architecture Tailored services Customer unique Fleet aware Real-time SMART CONNECTED PRODUCT DIGITAL TWIN PLATFORM DIGITAL TWIN SERVICES Computing Platform, Engineering, simulation & Design and innovation visualization platform Sensors, Connectivity insights, actions 8 Connected services. Cognitive services & Integrated customer support and field service data and capabilities business intelligence Cloud Cloud connected connected Manufacturing, supply Joinable with Enterprise intelligence & chain and quality system integration other devices performance

Digital thread

Digital twin

- The digital twin refers to a digital *replica* of physical assets, processes and systems that can be used in real-time for control and decision purposes
 - Computerized mathematical model (what we have done over years)
 - Real-time, thanks to IoT
- In contrast to a physical asset, the digital twin can immediately perform forecasting

Stochastic digital twin

- A stochastic digital twin is a computerized model of the stochastic behavior of a system where
 - the model is updated in real-time
 - based on sensor information and other information
 - accessed via the internet and the use of cloud computing resources
- What-if inquiries result in pdf's rather than single values

Real-time model

- A real-time model is a model where it is possible to obtain values of system performance and system states in *real-time*
- With real-time we mean that data referring to a system is analysed and *undated at the rate at which it is received*

Real-time model vs stochastic

The digital twin is a virtual image of an asset, maintained throughout the lifecycle and easily accessible at any time.

COLLABORATION

LIFE

Enable early insight into risk and performance issues, as well as collaboration with customers and other stakeholders.

Reduce major cost incurred by repeatedly searching for, verifying or reproducing

Software to support the asset lifecycle

Digital twin 1.0

Diagnostics

Prognostics

Twin based purely on OT

What about IT systems?

1 parent

>1 parent

parents are equivalent to children

Nature Reviews | Genetics

Taxonomies and ontologies

Rule-1

2

FailureMode(?x) ^ hasHappened(?x, true) ^ Device(?y) ^ happenedAt(?x, ?y) ^ FailureMode(?z) ^ theEndFffectIs(?z, ?x) ^ FailureMode(?a) ^ theHighEffectIs(?z, ?a)?theDirectFailureCauseIs(?x, ?a) ^ hasHappened(?a, true)

TRANSFORMATIVE MAINTENANCE SOLUTIONS Integration & Application of Technologies

Digital twin 2.0

What is context awareness?

- –"An application's ability to adapt to changing circumstances and respond according to the context of use"
- Issues in context awareness system implementing
 - How is context represented?
 - How frequently does context information have to be consulted?
 - What are the minimal services an environment needs to provide to make context awareness feasible?

• ..

What can I see in my data?

Now casting

1) What has happened

2) What is happening

Forecasting

3) What will happen in the future

4) When will it happen

Maintenance, when needed

Domain knowledge and AI, both needed

Predicting the future....

Or predicting the past.....

Domain knowledge and physics sometimes is not in the data

And the Uncertainty in RUL minimized with physics, maximized with data

Data driven or model based?

Data-Based or Physics-Based Models? – That is the question!

Hybrid models

- Combine knowledge about the physical process and information from sensor readings to enhance prognostics capabilities.
- Integration of measured data and physics can lead to a reduction of uncertainty (e.g. adjust predictions from model using observed data).
- Integration can be implemented at different levels of the PHM process:
 - Online model parameters updating.
 - Model predictions correction based on observed data.
 - Measure current damage level and propagate.
 - Build empirical degradation models from data.

Digital twin 3.0

The process of twin 3.0 building

The asset (machine, equipment, electronics, system, structure, etc.

FMECA identifying monitored failure modes and parts taxonomy

Defining taxonomy of parts within the asset

Articulation of Failure Physics

Can you predict and track the root cause of chaos?

Black Swan Losses

- Loss Distribution
 - Tail events are rare very little data
 - Typically strong model assumptions

All the knowledge together

Evolution of the Process

Technological Advance

PLM and digital twins **Product Lifecycle Processes** Design Build Operate Maintain **M&O Processes Digital Wind Solutions** Create Plan Execute Simulate & Validate **Processes Processes Processes** Processes Validate **Engineering Design** As – Built Records

Types of data analytics

To Educate and Inform

Descriptive Analytics

Group historical data according to their similarity

> Reports Mapping

Diagnostic

Determine cause of successes and failures

Analytics

Statistical analysis Queries Data Mining Predictive Analytics

Learning from the past to find out trends, standards, correlations. Anticipate the future.

Machine learning, Simulation, Forecasts To optimize

Prescriptive Analytics / Decision Support

Provide better options based on forecasts. Show implications of each option.

Optimization, Decision models, Planning Cognitive Analytics / Intelligent Autonomous Actions

To decide

AI systems that learns from actions, finding correlations, and learn from outcomes. Autonomous operations.

Artificial Intelligence Reduced human intervention

Take direct action

Building an Intelligent Enterprise with Artificial Intelligence-(AI)

Operational Analytics

Prescriptive Analytics

Simulation Driven Analysis, Human Decision Making Machine Learning, Deep Learning, Neural Networks

Cognitive Analytics Self- Learning & Intelligent Enterprise Artificial Intelligence, Cognitive Computing

Predictive Analytics Foresight Regression, Statistics

Simulation of maintenance policies and different RUL calculation

Maturity in the classical approach

...

In dark factory and unmanned assets maintenace crew out of the loop

- Context is dynamic
- Prescriptions cannot be taken manually
- Humans cannot keep up with data complexity
- Industrial AI must take over with cognition

Error Management Theory

Terror management

- Core premise: basic existential dilemma
 - Desire for life
 - Awareness that death is inevitable

Cognitive assets will self preserve

Sensor Data **Cognitive Maintenance** is a Machines Event Data Processes further upgrade on predictive Audio/Video inputs Break maintenance, as it enables us to inclusion Operate all kinds of data tenance UCTURE ement Data 1seucti ng Manual 12 intormed insight tain and d and superior recommendation on next **Cognitive Insights** best action. Failure probability Expected Time to failure Expected component to fail Next best action

Gather the data

...

- Instrument your equipment/assets to collect data
- · Gather preexisting data

Prereq off-load

Visualize the patterns

•••

- Visualize your data in meaningful dashboards
- Start to see patterns
- Build with Bluemix

Advance to analytics & digitization

 Gain insights from the data, produce models, predict recommendations

. . . .

 Streamline business processes

Value

Infuse with cognitive

- Refine models with cognitive machine learning
- Use other cognitive functions to improve engagement

Vision

.

Concluding remarks

- M2M is not possible due to lack of standards
- Multiagent and federated learning are good starting point for the facebook of the machines
- Machines may not talk but DTs can
- In unmanned and unattended assets social network can provide added value services and reduce need for humans

diego.galar@ltu.se diego.galar@tecnalia.com

Inan