

IPK INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

INSTITUTE MACHINE TOOLS AND FACTORY MANAGEMENT TECHNISCHE UNIVERSITÄT BERLIN June 14th 2022

Smart Maintenance – Digital networking as a holistic solution

Nikolaos-Stefanos Koutrakis, M.Sc.

Data Scientist | Research Fellow Production Machines and System Management Tel.: +49 30 39006-213 <u>nikolaos-stefanos.koutrakis@ipk.fraunhofer.de</u>

»IMIC – Industrial Maintenance Innovation Conference 13th and 14th June 2022, Bilbao, Spain«

OUTLINE

- Fraunhofer IPK
- Predictive Maintenance in Industrie 4.0
- Smart Maintenance Enabled by Intelligent Manufacturing Technologies
- Enabling Elements for Smart Maintenance
- Smart Maintenance Architecture
- Context Sensitive Assistance Systems
- Condition Monitoring & Prediction of Failures
- Roadmap to Smart Maintenance

IPK INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

Production Technology Center Berlin

Research for industrial production

IPK INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

INSTITUTE MACHINE TOOLS AND FACTORY MANAGEMENT TECHNISCHE UNIVERSITÄT BERLIN

© FRAUNHOFER IPK / IWF TU BERLIN

Production Technology Center Berlin

Application-oriented and basic research

INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

INSTITUTE MACHINE TOOLS AND FACTORY MANAGEMENT TECHNISCHE UNIVERSITÄT BERLIN 4

Fraunhofer IPK: Productions Systems

Your research partner for the digitally integrated production

IPK INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

INSTITUTE MACHINE TOOLS AND FACTORY MANAGEMENT TECHNISCHE UNIVERSITÄT BERLIN

© FRAUNHOFER IPK / IWF TU BERLIN

Digital Transformation

From technology-oriented to application-driven solutions

So far: technology focus

In future: application focus

Digitalization Industrie 4.0

- loT
- CPS
- Smart devices
- Cloud
- Apps
- ...

Investments / Innovation / Focus

- IT infrastructure
- Automation solution
- Plant and equipment technology
- Software

Digitally Integrated Value Creation

- Corporate and business processes
- Development and engineering processes
- Intelligent adaptive production systems
- High-performance production

IPK INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

INSTITUTE MACHINE TOOLS AND FACTORY MANAGEMENT TECHNISCHE UNIVERSITÄT BERLIN

© FRAUNHOFER IPK / IWF TU BERLIN

Predictive Maintenance in Industrie 4.0

Increasing profitability through data-driven value creation

- 82% of companies experienced at least one and an average of 2 unplanned downtimes in the past three years.
- For 72% of companies surveyed, zero unplanned downtime is the #1 priority or at least a high priority.
- Up to 220,000 € / h cost of equipment downtime
- 70% of manufacturing companies surveyed do not know exactly what the condition of their assets
- Predictive maintenance as a key factor in the manufacturing industry
- Cost allocation over the entire service life for the operation of machine tools

Costs for maintenance & inspection and unplanned repairs account for 46% of the operating costs of a machine tool

IPK INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

INSTITUTE MACHINE TOOLS AND FACTORY MANAGEMENT TECHNISCHE UNIVERSITÄT BERLIN 7

Smart Maintenance Enabled by Intelligent Manufacturing Technologies

INTEGRATED SMART MAINTENANCE CONCEPT FOR MACHINE TOOLS

https://www.youtube.com/watch?v=UopjwMvwvME

Development of IoT architectures and pipelines

Analysis of variable cyber-physical systems and connectivity of sensors in existing components

Solution:

- Design of data pipelines for analysis
- Development of virtual representations of components (digital twins) using asset administration shells
- Combination of heterogeneous data sources

Added Value:

- Basis for the development of data-driven business models
- Standardized access to data
- Preparation for use-dependent analysis of data

IPK INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

Smart Maintenance

Intelligent degradation, plant and process monitoring

IoT-based networking of systems and cloud services with adaptive sensor networks for condition monitoring to support maintenance.

Solution:

- Real-time evaluation of processes
- Context-sensitive process support through mobile assistance systems
- Integration of historical data from machine and components
- Development of application-related digital twins

Added Value:

- **Reliability** through avoidance of unplanned downtimes
- Increased efficiency of maintenance measures
- Data transparency through traceability and documentation
- **Cost-effective I4.0 retrofit** for existing plants

IPK INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

INSTITUTE MACHINE TOOLS AND FACTORY MANAGEMENT TECHNISCHE UNIVERSITÄT BERLIN 10

Machine Learning – Principle

- Creating the desired behavior of a computer system without explicit modeling or programming of an algorithm
- Learning and training using examples
- Feedback learning for continuous improvement
- Decision support, recommendations
- Tasks
 - Classifying for Characteristic Distinctions
 - Anomaly detection
 - Predictions
 - Adapt behaviour and strategy

Model Generation using Feedback Learning

IPK INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

Machine Learning – Principle

- Creating the desired behavior of a computer system without explicit modeling or programming of an algorithm
- Learning and training using examples
- Feedback learning for continuous improvement
- Decision support, recommendations
- Tasks
 - Classifying for Characteristic Distinctions
 - Anomaly detection
 - Predictions
 - Adapt behaviour and strategy

Model Generation using Feedback Learning

IPK INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

Process-driven AI approach for Production Industry

IPK INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

Smart Maintenance System

Condition Monitoring

- Data from interactive and context-sensitive assistance systems for mobile devices during maintenance operations
- Data linkage from product development and use, including service
- Use of historical data as the basis for remaining useful life (RUL) predictions

IPK INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

INSTITUTE MACHINE TOOLS AND FACTORY MANAGEMENT TECHNISCHE UNIVERSITÄT BERLIN 14

Three-layer IIoT system architecture

DESIGN TECHNOLOGY

AND FACTORY MANAGEMENT

TECHNISCHE UNIVERSITÄT BERLIN

raunhofer IPK is ertified by DQS against SO 9001:2015

Application Layer

Cloud Services

Data Services

Network Layer

Fog

Physical Layer

Digital Maintenance Assistance

- Context sensitive assistance following a model-based approach
 - Logic of a workflow is mapped in a process model
 - States describe start and end nodes of process steps
 - Actions contain information flow and stylesheet
 - Resources provide interfaces for M2M communication and content elements for visualization
 - Model is converted to JSON format
 - Visualized user interface (UI) is generated from JSON
 - Ul is used on mobile device
 - Information about proceeded steps is transferred to cloud server

Liquid level

not checked

IPK INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

Context-Sensitive Assistance for Smart Maintenance Activities

IoT platform contains information about:

- Products to be maintained (Digital Twins)
- Steps of the general maintenance process (Process Models)
- Linking of general process models and selected components (Service Cases)
- Further information about products or service cases (Documentation)

Real-time linking of mobile devices with IoT platform enables the integration of Context sensitive information

Cloud based IoT platform

IPK INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

INSTITUTE MACHINE TOOLS AND FACTORY MANAGEMENT TECHNISCHE UNIVERSITÄT BERLIN

Mobile assistance device

17

© FRAUNHOFER IPK / IWF TU BERLIN

Simple Process Creation by Usage of Process Patterns

INSTITUTE

DESIGN TECHNOLOGY

IPK **PRODUCTION SYSTEMS AND**

Condition Monitoring

- Classification Algorithms
 - Autoencoder
 - Support Vector Machine (SVM)
- Three states/classes
 (Damaged; Working; Standby)
- Hyperparameter tuning: 95% accuracy
- In real world scenarios closer to 92% based on empirical observations

PRODUCTION SYSTEMS AND

DESIGN TECHNOLOGY

INSTITUTE

Prediction of failures

Prediction algorithm

- Long Short-Term Memory (LSTM)
- Existing classification algorithms used for the classification of predicted behavior
- The goal of the prediction is to determine for certain sections of the spindle whether a damage can occur and at what specific point in the future

raunhofer IPK is ertified by DQS against SO 9001:2015

ROADMAP SMART MAINTENANCE

- Define **use case**
- Define the **IIOT architecture**
- Selection of suitable sensor technology
- Standards for data, formats, interfaces
- Data acquisition
- Documentation and evaluation of **operating states**
- Selection of suitable AI methods
- Modelling
- Application-related data analysis, classification & prediction
- Adapted maintenance strategy

IPK INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

THANK YOU FOR YOU KIND ATTENTION! Questions?

IPK INSTITUTE PRODUCTION SYSTEMS AND DESIGN TECHNOLOGY

