Opportunities and Challenges for Application of Digital Twins for Condition Monitoring

Surendra (Suri) Ganeriwala Spectra Quest, Inc. Richmond, VA 23228, USA Email: suri@spectraquest.com

8227 Hermitage Road, Richmond, VA 23228 U.S.A. TEL +1-804-261-3300/FAX +1-804-261-3303 www.spectraquest.com IMIC2022 Conference June 13-14, 2022 Bilbao Exhibition and Conference Center Bilbao, Spain

Digital Twin Motivation and Objective

- Digital Twin to be used to implement predictive maintenance
- User creates a model of an asset to monitor it more efficiently.
- The data is analyzed in cloud/locally, combine with history and other relevant information.
- Reliability engineering personnel can take appropriate action to prevent machine failure.
- The covid pandemic has accelerated remote monitoring
- Using cloud expert can be anywhere and provide much more accurate predicition

What is a Digital Twin?

- a. A CAD Model?
- b. Augmented Reality
- c. A software model with realtime data and documentation
 references
- d. A smart machine
- e. All the above?

Typical Rotating Machinery Failure Modes

What Sensors are used to detect faults?

- Hydraulic Failure Modes
 - Cavitation
 - Pressure Pulsation

- Pump Recirculation
- Radial and Axial Thrust
- Mechanical Failure Modes
 - Shaft Seizure or Break
 - Bearing Failure
 - Seal Failure
 - Vibrations
 - Fatigue
 - Misalignment

- Lubrication
 - Viscosity
 - Water
 - Wear Particles
- Motor
 - Rotor Bar Damage
 - Shorted Turns
 - Eccentricity
 - Mechanical Looseness
 - Power Quality
 - Power Circuit
 - Insulation

888.241.7585 Preston.johnson@cbtechinc.com cbtechinc.com

© CBT 2022. All rights reserved.

Power Generation

Key to Success: Quality Data and Expertise

Data Flow and Collection

Streaming Edge Analytics are a Necessity

© CBT 2022. All rights reserved.

Complexities and Challenges

- Illustration of the scatter in misalignment
 - induced vibration spectra
- Interesting observation due to misalignment
- Vibration generation model of misalignment
- Physical model based approach

Simulators (Rotors) Used in Studies

QI SpectraQuest, Inc.

Results: Coupling Type

SpectraQuest, Inc.

Results: Misalignment level

Spiral coupling, 1750 rpm, 3⁄4" shaft

Results: Shaft speed

SpectraQuest, Inc.

Mysterious Vibration Signature

Low frequency/level modulation

What cause this?

What is Misalignment?

The center lines of two shafts do no coincide.

Parallel misalignment

Angular misalignment

Misalignment Vibration Model

$$V = FF \times FRF$$

```
FF = CS \times M
```


- V: Vibration
- FF : Forcing Function
- FRF : Frequency Response Function
- **CS** : Coupling Stiffness
- M: Misalignment

Vibration Generation Model

$V = FF \times FRF$

The shaft speed samples the FRF.

Measured Vibration Model

Misalignment Forces (Preload)

Physics-Based Model Building

1. System divided into stations

Х

SpectraQuest, Inc.

- 2. Each station is composed of one or more beam elements
- 3. Each beam is identified by a length, inner and outer diameter, material density, modulus of elasticity and modulus of rigidity.

- Mass and stiffness matrix for each station is written (5 Dofs : 2 translational, 2 rotational, torsional). Shear effect is added to the model. Gyroscopic effect of disk elements included.
- 5. Stations' mass and stiffness matrices are assembled through the nodes (black dots) to form a global mass-stiffness matrix of the whole system

Vibration Generation Process

Effect of coupling type

Defines the shape of the forcing function.

Effect of misalignment type & level

- <u>Type:</u> Selects the direction of the coupling stiffness.
- Level: Defines the magnitude of the forcing function.

Effect of shaft speed

Amplifies and attenuates harmonic peaks.

Effect of shaft diameter

 Changes the FRF → amplifies and attenuates harmonic peaks even at the same shaft speed.

Ι G Ν Т R N S F E R

 \mathbf{O}

Motion Amplification using High Speed Camera to Visualize Component Motion

- Camera acts as sensor Displacements less than 100 microns not perceptible to the human eye
- Technology turns every pixel in the camera's view into a sensor
- Amplification of the motion facilitates visualization of the actual movement of the asset
- Measure and quantify any structure or asset that a camera can see

Provide information to the people who need it And when they need it

Bi-Directional Communication!

Future - 2030's and Beyond

- New wireless sensors, power sources, and communication technology
- Price per point will drop from current \$500 to \$50
- Cognitive/AI will assist all vibration analysts
- Expert availability via Cloud and bi-directional communication
- Improved prognostics models combining vibration, motor current, and other technologies
- Physics of machines/assets will remain important part of the predictive model
- Proactive maintenance will get upper management respect

